HTML and JavaScript Programming

“<td class="green"s>15-03-1983</ td> 1 Tnini”

-<td tlass«"green™s>Fiat: Na,. 303" '

ey s T

<td cTass="green">Awitabh Kumar</td>

<td €Tass="green">22-02-1984</vds - U o
- <td class="green >H No- 125, Kalkafii Delhi</te>
Letre
" <d class="gr
T etd cTasselge

shipra-syncﬂty;-eﬁa:iéﬁaQQItd>-_

<tre
<td class="greel
o<tdoclassegraen’
- <td: ctasse"green”st
w gftables
</body>
R L T T T T T

When you open this page, the output appears, as shown in Figure 2.65:

B C\Users\Amitobh Dy

ccurnentsi- i ;

" Fie Edk View Favorites Took Help

g s

Figure 2.65:
In Figure 2.65, you can observe that the color of table has changed to the specified color,

Multiple Styles

Multiple styles can be defined by using the different methods to implement CSS. For this reason, the use of
several external style sheets results in cascading the styles, which is a combination of styles for various HTML
elements. If multiple styles affect the same element, only the last one is used. You can link the external style
sheets to the document as follows:

<LINK rel=stylesheet. type="text/css' href="stylel.css">

<LINK rel=stylesheet type="text/css" href="styleZ.css"> .- .

LLINK relsstylesheat type="taxt/css" href="style3.css"> ‘ R
If multiple conflicting styles are found in the external style sheets, the €SS recommendations allow users to
select among several alternative style sheets using the rel attribute of the <STYLE> tag, which is combined with
the TITLE attribute to select them by name:

T RUINK relE'dltednate styleshiedt” type="text/css” href="stylel.css" ti tle="stylel">

CLINK Felo"aTtbrnate stylesheet” type="text/css” href="style2.css" titTe="styte2"> '

105

Chapter 2

~<LINK rel=stylesheer type="text/css" hrefs"style2.css"> el
Multiple styles are included in a page by using the various possible inclusion methods, However, the style
closest to the content is applied when some conflict appears among styles.
Let’s create a Web page, named MultipleStyles.html to understand how multiple styles work in an HTML
document. You can find the MultipleStyles.html file in the Code\ HTML\ Chapter 2 folder on the CD.
Listing 2.60 shows the code of the MultipleStyles.html page:
Listing 2.60: Linking Multiple Styles

To apply the styles that you specified in the code, you need to create those style sheets. In this case, we have
created the stylel.css and style2.css style sheets, which you can find in the Code\HTML\ Chapter 2 folder on the
CD. When you open this page, the output appears, as shown in Figure 2.66:

& C\llsertAmitabh\Documents\k + J +y

i ot PV Rieow
Figure 2.66: Applying Styles Using Multiple Styles

In Figure 2.66, you can note that the Style2.css style sheet is applied to the Web page, because it is the last

style sheet in the code.

Introducing DHTML

106

DHTML stands for Dynamic HTML and explains different technologies that are required to make Web pages
dynamic and interactive. DHTML is a term used by developers to describe the combination of HTML, CSS, and
scripts that helps to create animation on the document. In simple words, you can say that DHTML is a
combination of HTML, JavaScript, DOM, and CSS.

JavaScript is a scripting language that is used by DHTML to control, access, and manipulate HTML elements.
DOM stands for Document Object Model and defines a standard set of objects for HTML, and a standard way to
access and manipulate them. CSS allows Web developers to control the style and layout of Web pages.

HTML and JavaScript Programming

Introducing JavaScript

The HTML Web pages that you have worked with in previous sections are plain and static, that is their
presentation, style, and content are more or less fixed. Moreover, plain HTML Web pages do not offer a two-way
interaction with the users that makes them rather uninteresting and monotonous. You can enhance the Web
pages by adding some dynamism and interactivity in them. For instance, you may want to validate the values
that the user enter in an HTML form and perform different actions depending on the entered values, such as
submitting the form when you click the submit butten. In such cases, you need to make the Web page interactive
which you can do by using scripts in the HTML document.

A script is a program code that is written using a scripting language. A scripting language is a kind of
programming language with less functionality. Some of the commonly used scripting languages are JavaScript,
VBScript, ASP, and PHP. Among these, JavaScript is the most popular scripting language used to infuse
dynamism and interactivity in Web pages.

JavaScript (originally named LiveScript by its creator Netscape and Sun Microsystems) is an interpreted,
client-side (the scripts run in the Web browser), and object-based scripting language that offers various
functionalities to enliven the static HTML Web pages. Note that JavaScript is also known as ECMAScript as it
was standardized by the European Computer Manufacturer’s Association (ECMA).

The scripts written in JavaScript are processed line by line and that is why JavaScript is an interpreted language.
The scripts are interpreted by the JavaScript interpreter that is an in-built component of the Web browser. While
working with the JavaScript scripts, you can use the in-built objects and other programmable features, such as
control flow statements and events to make your HTML Web pages dynamic.

Client-Side Benefits of using JavaScript over VB Script
Client-side scripting languages, such as JavaScript and VBScript, are popularly used to develop interactive and
dynamic Web pages. VBScript and JavaScript are interpreted programming languages most commonly used to
manipulate and display HTML and DHTML contents. They both can be used in many other applications.
JavaScript, for example, can be embedded in the Shockwave Flash and Adobe PDF documents. VBScript is
commonly used as a scripting language for network administrators in the Microsoft Windows environment.
Both of these languages allow a developer to complete complex task in a relatively short period of time. This
ability allows developers to add dynamic qualities to static HTML and allows for more robust Web pages.
JavaScript has the following benefits over VB Script: _
O JavaSeript is very fast because any code function can run immediately without waiting for an answer from

the server.

O JavaScript is relatively simple to learn and implement.
Q@ JavaScript reduces the demand on the server as it is a client-side scripting language.

Embedding JavaScript in an HTML Page

You can embed a JavaScript script in an HTML document by using the <script> and </script> tags. The
<script> and </script> are HTML tags that allow you to enclose a script. When an HTML document
containing these tags is loaded in the Web browser, it processes content enclosed within the <script> and
</script> tags as script code.

Similar to other HTML tags, the <script> tag also has various attributes. Some of the important attributes of

the <script> tag are:

Q type—Refers to the Multipurpose Internet Mail Extensions (MIME) type of the script. As per the World
Wide Web Consortium (W3C), it is mandatory to specify the type attribute. It can have
text/ecmascript, text/javascript, text/vbscript, application/ecmascript, and
application/javascript asits value.

0 language — Refers to the scripting language used to create scripts. It is important to note that this attribute is
not required if you have specified the type attribute. However, for backward compatibility with the older

107

Chapter 2

versions of Web browsers that may not support the type attribute, you can specify both the attributes. This
attribute can have values, such as javascript and vbscript.

O src—Refers to the URL of another file that has a script. This attribute is used to specify external script files.

You can embed a script in an HTML document by creating a script within it or linking an external script file with
it. Let’s first learn how to create a script inside an HTML document.

Creating a Script in an HTML Document

108

You can create an entire script within the HTML document itself. Therefore, the script code is written inside the
HTML document making it inline with the HTML content. The script code is written between the <script>
and </script> tags in the HTML document.

You can place the <script> and </script> tags in the body or head portion of the HTML document as per
your requirements. You place the <script> and </script> tags in the body portion when you want the script
to run while the Web page is loading in the Web browser. On the other hand, if you want the script to run only
when the user performs an action, such as clicking a link, then you can place the <script> and </script>
tags in the head portion of the Web page.

Let’s create a Web page, named createScript.html to understand how to create a script in an HTML
document. You can find the createScript . html file in the Code\HTML\ Chapter 2 folder on the CD. Listing
2.61 shows the code of the createScript.html page:

Listing 2.61: Creating a Script in an HTML Document

In Listing 2.61, the <script> and </script> tags are placed in the body portion of the Web page, that is,
within the <body> and </body> tags. This implies that the script is loaded in the Web browser at the time when
the Web page is loading. In the <script> tag, the type attribute is set to text/{avascript and the
language attribute is set to javascript. These two attributes convey to the Web browser that the subsequent
content in the HTML document is a script that is written in JavaScript. The document .write("Creating a
Script in an HTML Document™)line written between the <script> and </script> tagsisa JavaScript
code. In this line of code, document is an object and write is a method that allow you to display information on
the Web page.

When you open this page, the output appears, as shown in Figure 2.67:

e

Page + 5 Took v

.mmu!w e O # 100%

Figure 2.67: Creating a Script in an HTML Document

HTML and .JavaScript Programming

There is no limit to the number of scripts that you can add in an HTML decument.

As you can see in Figure 2.67, the Web browser displays the HTML and script contents on the Web page.
Using an External Script File

In some cases, the JavaScript code that you create in an HTML document can extend to tens and hundreds of
lines that affect the readability of the HTML document. Moreover, you can use the same script in several Web
pages because creating the script in all the Web pages is quite cumbersome. For such cases, you can create an
external script file rather than creating the script inside an HTML document. After creating the external script
file, you need to link it with the HTML document by using the <script> tag.

Let's create an external script file, named myScript.js. You can find the myScript.js file in the
Code\HTML\ Chapter 2 folder on the CD. Listing 2.62 shows the code of the myScript.Js script file:

Listing 2.62: Creating an External Script File ‘

. document .write(Using an. External script File o -add a Seriptf) oo npimnl s’
Now, create a Web page, named addExternalScript.html to which the script file is added. You can find the
addExternalScript.html file in the Code\ HTML\ Chapter 2 folder on the CD. Listing 2.63 shows the code
of the addExternalScript.html page:

Listing 2.63: Creating the HTML document
B R R
<heads - .o
<titlesdavascriptexample:

ri

In Listing 2.63, the <script> and </script> tags are enclosed in the body of the HTML document. The src
attribute of the <script> tag is set to the URL of the script file. If the script file is in the same folder as the
HTML document, then you just need to specify the name of the script file. However, if the script file and the
HTML document are in different folders, then you need to specify the complete URL of the script file. Note that
there is no script code written between the <script> and </script> tags. In case you have written any script
code between the two tags, that code is not processed.

When you open this page, the output appears, as shown in Figure 2.68:

Figura 2.68: Adding a Script Using External Script File

109

Chapter 2

As you can observe in Figure 2.68, the Web browser processes the contents of the external script file that was
specified in the src attribute of the <script> tag.

Handling Events

110

Events are another common and popular way to incorporate interactivity in a Web page. They refer to a
particular action performed on the Web page by a user. For instance, an event can occur when the user clicks a
hyperlink on the Web page. There are some events that occur without the user’s participation, for example, an
event occurs when a Web page is fully loaded in the Web browser.

JavaScript defines several in-built events to assist you in making the Web pages dynamic and interactive, When
any of these events occur, its event handler is called. An event handler is a special function that handles a
particular event. In JavaScript, you can create an event handler and then associate it with the desired event. The
event handlers are associated with the events through certain attributes of various HTML tags. Table 2.12 lists
some of the common events and the event handling attributes of the HTML tags:

Table 2.12: Common JavaScript Events and the HTML Event Handling Attributes

i

abort Occurs when te user stops or cels the loadin of an image onabort
blur Occurs when an HTML element loses focus because the user clicks outside the onblur
element
change Occurs when the user changes the value of a text field in an HTML form onchange
click Occurs when the user clicks an HTML element, such as form element, an image,' onclick
oralink
dblctick Occurs when the user double-clicks an HTML element ondblclick
error Occurs when an error arises while the Web page or an image is loaded onerror
focus Occurs when an HTML element gets input focus onfocus
keydown Occurs when the user has pressed a key on the keyboard onkeydown
keypress Occurs when the user presses a key on the keyboard for a while onkeypress
keyup Occurs when the user has released a key on the keyboard onkeyup
load Occurs when a Web page or an image is completely loaded irt the Web browser ortload
moeusedown Occurs when the user has just pressed a mouse button onmousedown
mouseover Occurs when the user moves the mouse on top of a form element Onmouseover
mouseup Occurs when the user has just released a mouse button onmouseup
select Occurs when the user selects a text or text area field in an HTML form on the onselect
Web page
submit Occurs when the user submits an HTML form by pressing the submit button onsubmit

It is important to note that the event handler for a particular event is specified in the attributes of the HTML tags
and written in the JavaScript script. You can associate the same event handler with different events.

Let’s create a Web page, named handleEvent.ntml to understand how to handle events in an HTML
document. You can find the handleEvent . html file in the Code\HTML\ Chapter 2 folder on the CD. Listing
2.64 shows the code of the handleEvent . html page:
Listing 2.64: Handling an Event

| stitlesdavascriptExample</titles Ry :
<sCript type="text/javascript” language="javascripts

HTML and JavaScript Programming

functmn i ndPercentage(tota1 Marks)

f
-1F(tota1nar‘ks<=300) 8 Lo o RN : ORI
L dacument wr1te(“Per:entagea%(tota]Marksﬁ)#‘%«ebr/)“),.n. e ieta o Ry

- </ seri pt)

<centers
<form id="myform"s -
Enter To_ta‘l Ma s:

<fhtm1>
In Llstmg 2.64, the HTML form has a text f1eld and button In the <1an.1t> tag for the button the OﬂClle
attribute is used to specify the findPercentage () function as the event handler for the click event of the
button. This implies that the findPercentage () function is called when the user clicks the button. The
findPercentage () function takes the value entered in the TotalMarks text field as its argument and
displays the equivalent percentage on a new Web page.

When you open the handleEvent . html page, the output appears, as shown in Figure 2.69:

Figure 2.69: Handling Event
Enter a value in the Enter Total Marks field and click the Percentage button, as shown in Figure 2.69. For

example, if you enter the value, 204 and then click the Percentage button, the equivalent percentage appears
on a new Web page, as shown in Figure 2.70:

'o'-

4 Percentage=68%

duou‘x. I

anure 2. 70 Output After Calculating the Parcentage
In Figure 2.70, you can observe the calculated percentage on the Web page.

111

Chapter 2

Using the onclick Event

112

The onclick event occurs and runs a specified function when you click an object, such as a button. The
onclick event can only be added to visible elements on the page, such as form buttons and check boxes.
However, it cannot be added within the <head> tag.

Let’s create a Web page, named cnclickEvent.html to understand how to handle the onclick event in an
HTML document. You can find the onclickEvent . atml file in the Code\ HTML\ Chapter 2 folder on the CD.
Listing 2.65 shows the code of the onclickEvent.html page:

Listing 2.65: Using the oncllck Event
ekt :

o <heads L

et ﬂe:-zavascnptzxampi '

Pl e R e T e S
When you open the oncllckEvent html page, the output appears after enterl.ng your name, as shown in
Figure 2.71:

ompmef rouc

v

Flgure 2.71: Handllng the oncllck Evant

In Figure 2.71, you can notice that when you click the C1ick button on the form, the onclick event oceurs and
the alert message box appears to display a message.

When you enter your name in the Name textbox and click the C1ick button, the alert message box appears, as
shown in Figure 2.72:

g{& Hi Arnitabh, Welcome to Javacrpt

¢

Lok]

Figure 2.72: Alert Message Box After Clicking the Button
Let’s learn about the usage of onload event in the next section.

HTML and JavaScript Programming

Using the onload Event

The onlcad event is triggered when the user enters the page. This event is generally used to get the information
about the browser type and version, and load the Web page according to the information found. You can also
use the onload event to use the cookies that should be set when a user opens a page. For example, when the
user enters the Web page for the first time, you could have a pop-up asking for the user name. Once the user
enters the name, it is stored in a cookie. Next time when the visitor enters the same page, you could have another
pop-up to wish him with his name. Let’s create a Web page, named onloadEvent.html to understand how to
handle the onload event in an HTML document. You can find the onloadEvent.html file in the
Code\HTML\ Chapter 2 folder on the CD. Listing 2.66 shows the code of the cnloadEvent .html page:
Listing 2.66: Using the onload Event
Co<hmls o B
dheads
- =titlesJavas
<sCTipt: typé="text/javascript”>
function hello() :
alert -{"Good
= T :

O gseripts

tExample</titles

</body>
</html>’ . LT R
When you open the cnlcadEvent . html page, the output appears, as shown in Figure 273

)

Figure 2.73: Handling the Onload Event

In Figure 2.73, you can observe that when the body of the form is loaded, the onload event is triggered and the
alert message box appears to display a message.

Using the onmouseover Event
The onmousecver event is triggered when the mouse pointer passes over a specified object. It denotes that
something will happen when the mouse pointer moves over the active object.
Let’s create a Web page, named onmousecverEvent.html to learn how to handle the cnmousecver event in
an HTML document. You can find the onmouseoverEvent . html file in the Code\ HTML\ Chapter 2 folder on
the CD. Listing 2.67 shows the code of the onmouseoverEvent. html page:

Listing 2.67: Using the onmouseover Event
<html>
<head> 5
<titlesJavascriptExample</title>

113

Chapter 2

</head>

body bgcolor="pink"s
efa" .com”
: i

Note

You need to change the path of the image specified in the src atiribute according fo the image location on your system,

When you open the onmcusecverEvent . html page, the output appears displaying the specified image, as
shown in Figure 2.74:

When the mouse pointer passes from the image on the form, the cnmousecver event is triggered and the

mouseQver () function is called to prompt the alert message box displaying a message, as shown in Figure 2.75:
- oy = ; ; =T

Figure 2.75: Alert Message Box after Moving the Mouse Pointer over the Image
— Let’s learn to use the onreset event in the next section.,

114

HTML and JavaScript Programming

Using the onreset Event

The onreset event is triggered when the user clicks the Reset button on the form or when JavaScript executes
the form.reset () method. When the Reset button is clicked, the cnreset event calls a function to be
executed.

Let’s create a Web page, named onresetEvent.html to learn how to handle the onreset event in an HTML
document. You can find the onresetEvent . htm? file in the Code\HTML\ Chapter 2 folder on the CD. Listing
2.68 shows the code of the onresetEvent . html page:

Listing 2.68: Using the onreset Event
<html>
<head> : _ 0
'<t1ﬂe>JavaScr1ptExamp]e<{t rTes

'</ head> -'

<body bgco'[or: pmk“

: «/heml -
When you open the onresetEvent.html page, the output appears after entering the required details in the
respective fields, as shown in Figure 2.76:

Flgure 2.76: Handling the onreset Event

When you click the Reset button, the onreset event is triggered to display. the alert message box, as shown in
Figure 2.77:

115

Chapter 2

r_ Haval st Exsemiate - Merdowe Irernat Gaplow
! S y———— ————

i G_- RNt C:\Usus".a;:i;h';“._. oy

Figure 2.77: Alert Message Box After Clicking the Reset Button
Now, let’s learn the usage of onsubmit event in an HTML document.

Using the onsubmit Event
Similar to the onreset event, the cnsubmit event is triggered when the Submit button is clicked on the form.
The onsubmit event is generally used to validate all the values provided in the fields of a form before
submitting the form. If the form validation fails and the cnsubmit event returns false, the data is not sent to the
server.
Let’s create 2 Web page, named onsubmitEvent.html to learn how to handle the cnsubmit event in an
HTML document. You can find the onsubmitEvent.html file in the Code\ HTML\Chapter 2 folder on the
CD. Listing 2.69 shows the code of the onsubmitEvent.html page:
Listing 2.69: Using the onsubmit Event

i T

: r-bgeo:
“<form onsubmit
Hirs 3

#E Frotected Mode O *100% ~ :

Figure 2.78: Handling the onsubmit Event
116

HTML and JavaScript Programming

when you enter the required information in the form fields and click the Submit button, the alert message box
appears, as shown in Figure 2.79:

ﬂlwa nﬂbmph Wmdm !mmeibplor:r

Figure 2.79: Alert Message Box After Clicking the Submit Button
Let’s learn the usage of variables in JavaScript in detail.

Using Variables in JavaScript
In JavaScript, the data can be stored in variables which are the named locations in the memory. Variables are
used to temporarily store the data and have a name, value, and memory address. The name of the variable
uniquely identifies the variable, the value refers to the data that is stored in the variable, and the memory
address refers to the memory location of the variable.

You need to declare a variable before using it to store data. When you declare a variable, it means you are
introducing it in the script. While declaring a variable, you need to provide a user friendly and unique name for
the variable.

The syntax to declare a varlable is:
. var-variable name;: il LW CTR R |
In the preceding syntax, var isa keyword and varJ.able _name refers to the name of the vanable

The name of a variable or any programming entity is knows as an identifier. In a script, some of the identifiers are user-
defined and some are predefined. The predefined identifiers are known as keywords and are reserved for specific
purposes, such as declaring variables. You cannot use keywords as user-defined identifiers, for example, you cannot
use var as a variable name as this may resull in an error.

Now, let’s learn about the scope of variables in detail in the next section.

Scope of variables
It is important to note that in JavaScript, there is no limit on the length (number of characters) of the name of a
variable. However, there are certain rules that define the scope of variables. You need to keep these rules in
mind while naming variables in JavaScript:

0 The name of the variable must be unique in the script.

O The name of the variable can only contain letters, numbers, and underscores. It cannot contain spaces and
certain punctuation characters.

O The name of the variable must begin with an uppercase or lowercase letter or an underscore; it cannot begin
with a number.

O The name of the variable cannot be enclosed by single or double quotations.

Q0 The name of the variable cannot be same as any keyword in JavaScript.

117

Chapter 2

118

_ Table 2.13: Examples of Invalid and Valid Names of Variables

In Table 213, you can have a look at some examples of invalid and valid names of variables in JavaScript:

ld Varfabls Nam

: 8939‘*5 BSOS T cocio0:24
var - _ varl
My*Variable/ /One My_Variable_One

o SN - A L T e Sam R £ L ok M s L 2 L L e e

count

- _Book-Tlﬂes

B e L L A A T s B WL ey e 1T ST

NoTE 3

Unlike HTML, JavaScript is a case-sensitive language, that is, it treats uppercase and lowercase letters differently. For
instance, the variable names, MyVariable and myvariable represent two different variables and not the same variable.

While naming a variable, if the name has two or more words, then Yyou can separate the words with an underscore. You
can also write the first word in lowercase and the first letter of the subsequent words in uppercase, for example,
numberComputerBooks.

Let’s take a look at the example, given in Listing 2.70, to declare a variable in a JavaScript script:
Listing 2.70: Declaring a Variable in JavaScript
<html> : ' :
<head> _
<title>lavascriptExample</titles .
</head> o
<body hgcolor="pink"> : o Sl
<script. type="text/javascript” language="javascript"s
var countBooks; ' o L o
</script>
</body>
</html>
In Listing 2.70, you can observe that the Web page has script in which a variable named countBooks is
declared by using the var keyword.

In JavaScript, you can declare multiple variables in the same statement. To declare multiple variables
simultaneously, you need to separate the individual variables by a comma ()

Listing 2.71 shows an example of how to declare multiple variables:

Listing 2.71: Declaring Multiple Variables in JavaScript

<html>

<head>)

<titlesJavascriptExample</title>

</heads .

<body bgcolor="pink">

<script type="text/javascript" language="javascript"s> .

var countBooks, minBookPrice, maxBookPrice, bookNase;)

</script> i .

</body> S

</html>)] i : T 4
In Listing 2.71, you can see that the script within the <body> and </body> tags has four variables named
countBooks, minBookPrice, maxBockPrice and bookName that are declared in the same statement.

A variable can store only one value at a time; however, it may store different values at different times in the
script. In JavaSceript, it is not necessary that a variable has to store only a particular type of data. A JavaScript

HTML and JavaScript Programming

variable can store a value of any data type. For example, the same variable can store both a string and a number
at different times in the script. This is why, JavaScript is considered a poorly typed language.
In JavaScript, you can assign values to a variable either at the time of declaration or after that. In addition, you
can assign values to a variable as many times as you want as per your requirement. However, the variable stores
only the most recent value assigned to it. After assigning a value to a variable, you can use it in the script. You
can access the value of a variable by using its name in the script.
The syntax to assign a value to a variable after it is declared is:

variable_name = value; . : : e
In the preceding syntax, variable_name refers to the name of the variable, = is the assignment operator, and
value refers to the value that is to be stored in the variable.

You will read more about the assignment operator later in the chapter.

As stated earlier, you can assign values to a variable while declaring it by using the assignment operator.

Let’s create 2 Web page, named assigningVariables.html to assign values to a variable. You can find the
assigningVariables.html file in the Code\HTML\ Chapter 2 folder on the CD.

Listing 2.72 shows the code of assigningvariables.html page:

Listing 2.72: Asstgmng VaIues to Vanables

<htmls>
<head>
" etitlesJavascri ptea:amplu/twtl» .
</head>»
<body- bgce1or-”p1nk' B
.o eseript, type= text/.avasc
;. var countl ks=5 ;

r1:ﬁt "1 gng;;ageﬁ'_? jay_hscr‘i p':t " "

: </s¢_:3._r'_'1'pt;_- g

</body>‘ o
[n Listing 2.72, you can observe that in the fn'st staternent of the scnpt the countBooks variable is assigned a
value of 50 while declaring it. In the second statement of the script, the countBooks variable is assigned a
different value, 2000. Therefore, the countBooks variable now stores 2000 and not 50. The value of the
countBocks variable is displayed with the document.write ("countBooks="+countBooks) statement
where + is an operator to append two strings.

When you open this page, the output appears, as shown in Figure 2.80:

HC\M\anahh\Dxumnts\ 'j‘flxt m?f‘f_) .
FﬂeingmFmr.u.:l‘toosM o
[V Qmﬁmpﬁumpie

Dane mncmmﬂma:mduoaeo«

Figure 2 80: Assigning Values to Vanables

As you can observe in Figure 2.80, the countBooks variable stores the most recently assigned value, 2000 and
not the initially assigned value, 50.

119

Chapter 2

If you have declared multiple variables in the same statement, you can assign values to them. You can do this by
suffixing the variable name with the assignment operator followed by the value for that variable. You can also
assign the value of one variable to another.

Let’s create a Web page, named assigningMultipleVariables.html to assign values to multiple variables,
You can find the assigningMultipleVariables.htmi file in the Code\ HTML\ Chapter 2 folder on the CD,
Listing 2.73 shows the code of assigningMultipleVariables.html page:

Listing 2.73: Assigning Values to Multiple Variables while Declaring

<html> L i .
<head> S
<title>lavascriptExample</titles
</head>
<body bgcolor="pink"> . .
<script type="text/javascript" language="javascript’>- - -
var. countBooks=50, minBookPrice=150, maxBookPrice=3000, bookName; "~
countBooks=2000; .) Co
minBookPrice=500; - 77 .o o 0T o

: maxBookPrice=minBookPrice; e i SRS
document .write("countBooks="+countBaoks+"
") " L. o
document.write("maxBookPrice="+maxBookPrice+"
"); -
document.write("bookName="+bookNanig) ;' EE
</scripts. . : :

. </body> - .

LR Hm T : . : R L . :

In Listing 2.73, the variables, countBooks, minBookPrice, maxBookPrice, and bookName are declared in the

same statement. The countBooks, minBookPrice, and maxBookPrice variables are assigned values while

they are declared, but the bookName variable is not. You can also notice that the value of the minBookPrice is
assigned to the maxBookPrice vatiable. This implies that the minBookPrice and maxBookPrice variables
have the same value. The value of the countBooks, maxBookPrice, and bookName variables are displayed
using the document object and its write () method. Note that the
 tag is used in the write () method to

insert a new line.

When you open this page, the output appears, as shown in Figure 2.81:

X B I- - M T
s {8 CalsemAmitabhDocuments) v | 4 |

Pl B Ve fos T My
W R eaScipiamnle o

Figure 2.81: Assigning Values to Variables while Declaring

In Figure 2.81, you can observe that the values of the variables, countBooks, maxBookPrice, and bookName,
are displayed on the Web page. The value of the bookName variable is displayed as undefined because it has
not been assigned any value in the script.

When you do not assign any value to a variabie, it stores an undefined value.

Let’s learn to use array in JavaScript in detail.

120

HTML and JavaScript Prograrmming

Using Array in Javascript

Consider a situation where you need to store and use the price of 100 books. For this, you can declare 100
variables in the script to store the prices. However, declaring so many variables is rather cumbersome and
inefficient. In such a case, instead of using the variables, you can use an array to store the book prices. An array
is a named collection of different values. The individual values are represented by their respective array
elements, each of which has a unique index. The index is 2 whole number that indicates the position of the array
elements with respect to one another.

Similar to variables, you need to introduce the array that you intend to use in the script. In JavaScript, arrays are
instances of the Array object You can create or define arrays by using the new keyword. In JavaScript, the
values in an array need not be of the same data type. For instance, an array can have both strings and numbers.
The syntax to define an array is:

var array_name=new -Array{array-length);: CLEEa T et e et e
In the preceding syntax, var and new are JavaScript keywords while Array refers to the Array object. The
array name refers to the name of the array and array_length refers to the length or the number of array
elements. Note that specifying the number of array elements while defining an array is optional.
Let’s take a look at an example, given in Listing 2.74, of defining arrays in a script:
Listing 2.74: Defining an Array in a Script

escript type

ript 1 age="javascript’>
- var:bookPrices T

o <fhtmls : T T e L e e L :
In Listing 2.74, bockPrices and bookNames have been defined as arrays by using the new keyword. The
bookPrices array has three array elements, while the hookNames array has zero array elements.

As you know, you can specify the number of array elements while defining an array. However, the array is not
yet populated, that is, the array elements do not store any value and display the undefined value. You can
assign values to the array elements while defining the array as shown:

var bookNames=new. Array("Pelican. 8rief", "who Moved My Cheese”, "The Call of

the witd"); St i DT e S
In this code, the bookNames array is populated while defining it. The values for the array elements are specified
within the parentheses after the Array keyword. The individual values are separated by a comma. Note that the
bookNames array has only string values.

you can access the array elements after defining them. In JavaScript, you can use the array that you have defined
in a script by accessing its array elements. As you know, each array element stores a single value and has an
index that indicates the relative position of an array element, The starting index of arrays in JavaScript is zero.
That is, the first array element has an index of zero, the second array element has an index of one, the third array
element has an index of two, and so on.

The highest index in an array is ane less than the total number of array elements. For instance, if an array has 50 array
elements, then the highest index is 49.

The syntax to access an array element is:
array_name[array_element_index];

121

Chapter 2

In the preceding syntax, array name refers to the name of the array, which is followed by a pair of square
brackets. The array_element _index refers to the index of a particular array element.

Let’s create a Web page, named accessirray.html to access the array elements. You can find the
accessArray.html file in the Code\ HTML\ Chapter 2 folder on the CD,

Listing 2.75 shows the code of accessarray.html page:

Listing 2.75: Accessing an Array Element in a Script

<htmT>
c<titlesJavascriptexample</titles . - -
</heads> .- L e
<body. bgcolor="pink"> : : : _
<sCript type="text/javascript" language="javascript™> = .
var bookPrices=new Array(1); . T R T
t oo var bookNames=new array("pelican srief";
corhe WY B sl L o s S
bookPriges{0l=150
bookpPrices[1}=100;
bookPricesf2]=90;
for(var i=0;i<3;i++) _
document.write(bookNames[i]+", Rs. +bookpri es[i]

"ﬁh-’;::ﬂo‘v_éd My, Ch_ees:e".,- "The Call.of ;-

In Listing 2.75, the bookPrices array is populated by accessing and assigning values to the individual array
elements. Values of the array elements of the bookPrices and bookNames arrays are accessed in the for
loop. The variable i declared in the for loop is used to specify the index of the array elements. When i is 0, it
refers to the first element of the bookNames and bookPrices arrays; when i is 1, it refers to the second
elements of both the arrays, and so on.

When you open this page, the output appears, as shown in Figure 2.82:

&5

I : :
kel " 1 H CAlserivimatsbinDacun = | ¥y | F Goon!

Fiie Eot view Favorites Tock Help

M Computer | Protected Mode: O#f

Caioew - -

Figure 2.82: Accessing an Array Element
In Figure 2.82, you can observe that the name and prices of the different books appears on the Web page.

Using Array Methods

When an atray is created, it also gets properties and methods to manipulate the elements contained in the array.
Some of these methods are listed as follows:

0 length
O reverse

122

HTML and JavaScript Programming

O sort
a concat
0 join

Let's create a Web page, named ArrayMethods.html to learn the use of these methods. You can find the
ArrayMethods.html file in the Code\HTML\ Chapter 2 folder on the CD. Listing 2.76 shows the code of the
ArrayMethods.html page:

Listing 2.76: Using Array Methods in a Script
<html>
<head> . S
<title>lavascriptexample</title>
</head>)
<body bgcolor="pink"> :
<script type="text/javascript” Tanguage="javascript">
var bookPrices=new Arr-;t_y-(?;}:‘.- . :
- var bookNames=new Array(“pelican srief”, "who Moved My Cheese", "The call of the wild"};
bookPrices[01=150; S ‘
bookPrices[1]=100;
bookPrices[2]=90; .~ .

document . wri te(book#rﬁ‘ c.e.'s . ’length;u- "
");

document . wri te("<br;>';_ + _.bookNames .__c:oncat O+ "
");
document .write (‘;{br_a»'_' +::'_b06kNames . reverse(ﬁ "
");
do.c.um_ent.._y_\rrfi.te.('.‘
" > Sﬁﬁkﬁamgs.sort() + "
");

document .write("<brs™ + bookPrices.join(Q + "
"); -

<fscripts .
</body> . -
</heml> RS o B

In Listing 2.76, you can observe that the length property returns the length of the bookPrices array. The
concat method concatenates all the elements of the bookXames array; the reverse method reverses elements
of the bockNames array; the sort method sorts the elements of the bookNames array in ascending order; and
the join method combines all elements of the bookNames array as a single element. When you open this page.
the output appears, as shown in Figure 2.83:

\‘ | ¥ CitsersiAmitabhi:Documents), v i by XE

Bone) M Computer | Protected Mode: Off 1% v

Figure 2.83: Accessing Array Methods

123

Chapter 2

In Figure 2.83, you can observe that the names and prices of the books appear on the Web page by using the
different array methods.

Creating Objects in JavaScript

124

As stated earlier, JavaScript is an object-based scripting language. An object is a programmable entity that you
can use in the script. JavaScript provides several in-built objects that represent different aspects of a Web page.
Every object has certain properties and methods that help to work with the specific aspects of a Web page. A
property of an object refers to an atiribute of the object, while a method refers to a particular action or task that
can be performed on the object. The properties and methods differ from one object to the other.

In JavaScript, the in-built objects pertain to the type of content displayed on the Web page. For instance, some of
them allow you to work with text, while some allow you to work with date and time. Table 2.14 lists the
commonly ased JavaScript objects and their fmportant properties and methods:

1
i

Table 2.14: Common JavaScript Objects and their Important Properties and Methods | 5

String Allows you to create and manipulate a length bold{), charAt(), concat(), indexOf(), ;
string of characters that are enclosed in mateh(), replace(), search), substring(), ~ :
single or double quotes toLowerCase(), toUpperCase() é
Array Allows you to create and manipulate a length concat{), join{}, reverse(), sort(), ?
series of values that are represented by a valueQOf() ;
single name :
Date Alows you to create and manipulate Date(), getDate(), getDay(), getMonth(), %
dates and times getYear(} §

You can access and use the properties and methods of the in-buiit JavaScript objects. For the in-built JavaScript
objects, you need to first create an instance of that object by using the new keyword. With the newly created
instance, you can then access the properties and methods of the objects by using a dot (.) between the instance
name and the property or method name. However, for the DOM objects, you need not create an instance of the
object.

e

Keywords are special words that are reserved for some specific purposes in the language. JavaScript has many
keywords, for example the new keyword allows you to create instances of objects.

You can use the object name to access its property or method, as shown in Listing 2.77:
Listing 2.77: Accessing the Property and Method of Objects
<heml> e R e T

i
<head> : g
<title»JavascriptExample</titles
</head> S
<body bacolor="pink"> =
 <script types"text/javasci
var-myString=new String("s
document.write (myString. Jengd
 sfscripts .
</body>
</html> T 1 PERAE R S B R
In Listing 2.77, an instance named myString of the String object is created by using the new and var
keywords. The myString instance refers to the text Welcome. The length or number of characters in myString
is accessed by using the length property in the write{) methed of the document object. Note that the
length property of String object and the write () method of the document object are accessed by using a
dot (.) between them and the object name,

i '};aﬁguagew"j.é\?ascmbt‘“i =
Loue :!r . o

thy;

i)

HTML and JavaScript Programming

Let’s take another example to access the methods of the Date object. The date and time that is used in the
JavaScript is taken from the system clock and calendar that is running the browser application in which the
script is loaded. You can access the system clock information by creating a Date object. Let’s create a Web page,
named Date.htnl to access the system date and time information. You can find the Date.html file in the
Code\ HTML\ Chapter 2 folder on the CD. Listing 2.78 shows the code of the Date.html page:

Listing 2.78: Accessing the Property and Method of Date Object
<html> - :
<head> ' B e T
<script language="javascript" type="text/javascript”>

var dt=new Date(} ..
var day=dt.getbay() - c
var month=dt.getMonth() =~
var. year=dt.getyear() -
var date=dt.getbDate()
var days=new Array("sunday","Monday","Tuesday”,"wednesday","Thursday”,” Friday™; "saturday")
VAL BOMNSSON o arch®,Aprd 1, ey, "3une® "Iuly”, "August” ,"Seprember”
. efseript> s mET T
</head> .
<body bgcolor="pink"> R L
<seript Tangiage="Javascript® type="text/javascript™

dacument.w_r'ite-.(_‘j‘rdday'is‘_ " o dayslday] + %, * + date + " ¥ moniths [month] « " + year)

</script>
</bodys
</html>

In Listing 2.78, we have created two arrays, named days and months to store the different days and months
respectively. By default, the getDay () and getMonth () methods return the days and months in integer value.
When you open the Date . html page, the output appears, as shown in Figure 2.84:

H100%

Figure 2.84: Accessing Date Methods

In Figure 2.84, you can observe that the date appears on the Web page by using the different Date methods.
Similarly, let's create another Web page, named String.html to access the different methods of the String
object. You can find the String.html file in the Code\HTML\Chapter 2 folder on the CD. Listing 2.79 shows
the code of the String.html page:
Listing 2.79: Accessing the Property and Method of String Object

ahbmls> - o T o

- -<heads . :

</heads

<body bgcolor="pink">

<script type="text/javascript’>

125

Chapter 2

126

var st= "welcome to Javascript programming, "

var- str="Happy Programming!i!"

document.write(st.bold() + "

") _

document.write("The character at 11th position is " + st.charat(1ll) + “"<BR»
 ")
document.write(st.concat(str) + "

 "}

if (st.match(/(Javascript)/))
{

dacument.write("The string contains the word Javascript” 4 "

")

1

if (str.search(/(Happy)/} 1= -1)
{ ' .
document.write(str.repiace(/(Happy)/, "Enjoy") + "

") ..

}

document.write(str.substring(6, 17) & "

")

‘document..write(st, toLowercase() + "<BRr
'")

document.write(str.touppercase() + "<BR»
")

Cogfseripts s : T O T

</body>

</htmi> : S R T .
In Listing 2.79, we have created two variables, named st and str to store two different string values, Then we
have used different methods of the String object to perform the desired operations, such as changing the case
of characters and searching a particular text in the string. When you open the String.html page, the output
appears, as shown in Figure 2.85:

l’bechumn:mpmi .
wmmm T , . :
HAPP?PRQansﬂhNGui;_'

)) M Computer | Protected Mode: GFF lo0% v

Figure 2.85: Accessing String Methods
In Figure 2.85, you can observe that the string appears on the Web page in different formats by using the
different String methods.
JavaSeript also supports various HTML Document Object Model (DOM) objects. The DOM refers to a
hierarchical collection of objects that allow you to work with HTML documents. The DOM objects, shown in
Figure 2.86, represent different aspects of the Web browser and content in an HTML document in the form of a
hierarchy.

HTML and JavaScript Programming

window object
'——‘l location object
—@n object

Figure 2.86: DOM Objects
As you can see in Figure 2.86, the window object is the container for rest of the navigator, screen, history,
location, and document objects. Note that all these objects are DOM objects.

Similar to the JavaScript objects, the DOM objects also have properties and methods. Table 2.15 lists the DOM
objects along with their important properties and methods:

Table 2.15: DOM Objects and their Important Properties and Methods
window Represents the Web browser defaultStatus, name, status, alert{), close(}), confirm(), !
E window. Note that if the Web self, closed, history, focus(), open(), print(), |
page is divided into frames, location, document prompi()
then each frame corresponds 3
to a window object. i ;
navigator Allows you to access various : appCodeName, appName, javaEnabled() ;
information about the user’s appVersion,
Web browser. cookieEnabled, platform,
screen Allows you to access different availHeight, availWidth,
information about the user’s colorDepth, height, width :
screen, :
history Represents a list of URLs that length ; back(), forward(), go()
the user has already accessed. ;
In case, the Web page has
! frames, then each frame has its
own list of URLs,
location Allows you to access host, hostname, href, assigny), reload(), replace()
: information about the URL of pathname, port, protocol,
: the Web page that is currently search
opened in a window or frame.
documert Represents the HTML lastModified, title, URL, close(), getElementByld(),
document or Web page that is getElementsByName(),
currently opened in the Web getElementsBy TagName(),
browser. open(), write(), writeln{)

The history, location, and document objects are also properties of the window object,

Let’s learn about the object hierarchy in JavaScript.

Object Hierarchy in JavaScript
We know that JavaScript includes a number of objects that are contained within each other. JavaScript objects
have a container to contain object relationship rather than a class and subclass relationship. However, JavaScript
properties are not inherited from one type of object to another. There are two main types of JavaScript objects:

127

Chapter 2

J Language Objects — Provides by the language and not dependent on other objects.
0 Navigator—Provides by the client browser. These objects are the subobjects of the navigator object.
Figure 2,87 displays the object hierarchy in JavaScript:

R

Figure 2.87: JavaScript Object Hierarchy
Now, let’s learn to use operators in detail.

Using Operators

128

As you know, variables are used to temporarily store the data that you want to use in a script. You can now
modify or change the data by manipulating the respective variables. For instance, you have declared two
variables named marksMaths and marksScience and want to add the value of these two variables. In such a
case, you need to manipulate these variables to get the desired result. One of the most common ways of
manipulating variables is by using operators, An operator is a symbol or a word that is reserved for a special
task or action. Every operator works on one or more operands, that is, an operator takes the values of its
operands, performs an action, and returns the result of that action.

In JavaScript, there is a whole gamut of operators that you can use as per your requirements. Some of the
operators work on a single operand, while some work on two operands. Moreover, some operators work on
numbers, while others work on strings and Boolean values. Table 2.16 lists some of the commonly used
operators in JavaSeript:

Table 2.16: Commonly used Operators in JavaScript 7 !

o

Arithmetic Operators

+ Adds two numbers or joins two strings. It also 45+10 returns 55 ;
represents a positive number when it is prefixed to a “My * + “Name" returns “My Name”
number. i
- Subtracts two numbers or represents a negative -45+10 returns - 35 \
number, 3

Multiplies two numbers,

oo v

45" 10 returns 450

O B

/ Divides two numbers evenly and returns the quotient. 45/10returns 4.5 :

% Divides two numbers and returns the remainder. } 45%10 returns 5 :

- ot . ok

HTML and JavaScript Programming

Table 2.16: Commonly used Operators in JavaScrlpt

++ i Increments the value of a number by one. It can be
+ prefixed or suffixed to a number. When prefixed, the
i value is incremented in the current statement, and when
suffixed, the value is incremented after the current !

statemnent.

myvVarl=45
myVar2=++myVarl assigns 46 to myVar2
myVar2=myVarl++ assigns 45 to myVar2

Decrements the value of a number by one. It can be
prefixed or suffixed to a number. When prefixed, the
value is decremented in the current statement, and
when suffixed, the value is decremented after the
current statement :

myVarl= 45
myVarZ2=--myVarl assigns 44 to myVar2

myVar2=myVarl-- assigns 45 to myVarz

e S—

1

i Ass;gnment Operators
i -
: Assigns the value on thh right hand s:de to the vanable

on the left hand S]dt

¥

= H
B

i

Adds the rlght hand 51de operand to the left hand side §
operand and assigns the result to the left hand side g
operand. H

myVar=90
i

B

myVarl=45, myVar2=10
myVatl+=myVarZ? assigns 550 myVarl

SR S SRR

Subtracts the right hand side operand from the left hand
side operand and assigns the result to the left hand side
operand.

myVarl=45 myvarz=10
myvVarl-=myvVar? assigns 35tomyvarl

Multiplies the right hand s1cle operand and the left hand
side operand and assigns the result to the left hand side
operand.

myVarl=45, myVar2=10
myVarl*=myvVar2 assigns 450 tomyVarl

Divides the left hand side operana by the right hand
! side operand and assigns the quotient to the left hand
i side operand.

%

myVarl=45,myvar2=10
myVarl/=myvarZ assigns 4.5 tomyvarl

%= ‘ Dw1des the left hand side operand by the r1ght hand |}
side operand and assigns the remainder to the left hand H

side operand. ;

H
: 5
: i

myVarl=45, myVar2=10
myvarl%=myVar2 assigns 5 tomyVarl

i

Returns true if both the operands are equal, otherwise
returns false.

45==10 returns false

Returns true if both the operands are not equal,
otherwise returns false.

45!=10 returns t rue

Returns true if the left hand side operand is greater
than the right hand side operand, otherwise returns
false.

45>10 returns true

Returns true if the left hand side operand is greater
than or equal to the right hand side operand, otherwise
returns false.

45>=10 returns true

Returns true if the left hand side operand is less than
the right hand side operand, otherwise returns false.

E

45«10 returns false

Returns true if the left hand side operand is less than
or equal to the right hand side operand, otherwise
returns false.

45<=10 returns false

129

Chapter 2

Table 2.16: Commonly used Operators in JavaScript

al Operators

&de Returns true only if both the operands are true, trueséfalse returns false
otherwise returns false.

| Returns true only if either of the operands are true, It truel | false returns true
returns false when both the operands are false. H

! Negates the operand, that is, retumns true if the Itrue returns false
operand is false and returns false if the operand is
true.

Conditional Operator

7: Returns the second operand if the first operand is true, myVarl=45, myVar2=10
; otherwise, returns the third operand. myResult=(myVarl<myVar2)?myVarl:
myVar2 returns 10

H

You can use operators to perform various functions, such as mathematical calculations, modifying strings, and
making decisions, The combination of operators and their operands form expressions. An expression either has a
specific value or evaluates to a value, for example, 45 and varl+var2. In JavaSeript and other programming
languages, expressions are evaluated in a particular order. The order of evaluation is determined by the
precedence of the operators with respect to one another. Operators are evaluated in the order of higher
precedence to lower precedence. Table 2.17 lists the operators in the decreasing order of their precedence:

Table 2.17: Precedence of Some Commonly Used Operators from Highest to Lowest

Operator Highest Precedence

L, - (negative sign), ++, --, typeof
.

+, - (subtraction)

<, <=, > 3=
==, I=
&&, ||, 2 =

Lowest Precedence
=, +=, =, *=’ /=’%=‘

In case there are two or more operators of the same precedence in an expression, the operators are evaluated as
they appear in the expression from left to right. For instance, the expression, 45+5-2+*10 evaluates to 30. The *
operator is evaluated first, followed by the + operator and the - operator.

It is very essential that you are aware of the precedence of the operators; otherwise, you may get unexpected
results. However, you can also override the precedence of an operator by using parentheses. The parentheses
have the highest precedence and any expression that is enclosed within parentheses is evaluated first.

Let’s create a Web page, named OperatorPrecedence.html to learn the uses of the operators. You can find
the OperatorPrecedence.html file in the Code\HTML\ Chapter 2 folder on the CD. Listing 2.80 shows the
code of the CperatorPrecedence .html page:

Listing 2.80: Working with Operators

<htm]>
<head> L
etitleslavascriptExanmple</title>

130

HTML and JavaScript Programming

</head> o
<body bgcolor="pink">

<script type="text/javascript" language="javascript">
var math=95,english=80, science=90,avgMarks;
avgMarks=math+english+science/3; B
document.write("Average Marks="+avgMarks);
avgMarks=(math+english+science}/3;

document .write("
Average Marks="+avgMarks);

</script>

</body>

</html>
In Listing 2.80, the script within the <body> and </body> tags has four variables, namely, math, english,
science, and avgMarks. These variables store the marks in Mathematics, English, and Science subjects and the
average nmarks respectively, The avgMarks variable is first assigned the value of the
mathtenglish+science/3 expression. Note that in this case, because of the higher precedence of the /
operator, science/ 3 is first evaluated, which is then added to the value math+english. However, in the fifth
script statement, avgMarks is assigned the value of (math+english+science)/3. In this case, the
math+english+science expression is evaluated first asitis enclosed within parentheses and then divided by
3. When you open this page, the output appears, as shown in Figure 2.88:

_ R -

- [catmmamenno < {13 % oy B
File Edit View Favorites Tocéls_ Heip
w1 laveScipEample, P M v e v oorPage
Aversge Marks=88 3333333333333 7 10
i
1 DR TR
M Computer BI0% +

Figure 2.88: Using the Operators

In Figure 2,88, you can observe that the result of the first expression is 205 because the expression first performs
the divide operation and then the addition operation. However, in the second expression, the expression first
adds all the variables and then performs the division operation.

| Working with Control Flow Staternents

The scripts written in JavaScript are sequentially executed in a top-down manner, which means that the first
statement in the script is the first to be executed and the last statement in the script is the last to be executed. This
is the simplest and most straightforward way to execute the scripts. However, if you want to change the
sequence in which the script statements are executed, then you can use the control flow statements.

As the name suggests, control flow statements are special statements that control or alter the flow of execution of
script statements. You can make decisions about the execution of statements with the help of control flow
statements. The decisions are based on the value of a condition, which is a JavaScript expression that evaluates to
a Boolean value (true or false). When the condition evaluates to true, a particular group of statements is
executed and when the condition evaluates to false, another group of statements is executed.

In JavaScript, the control flow statements can be classified as:)
O Selection statements — Allows the execation of a group of statements from multiple groups of statements

0 Loops— Allows a repeated execution of a group of statements

13

Chapter 2

0 Jump Statements — Allows the execution to skip or jump over certain statements
Let’s learn about each of them in detail starting with selection statements.

Working with Selection Statements

Suppose your Web page has an HTML form to collect certain information, such as the name, phone number, and
age of the users. When a user fills the form on the Web page, you may want to ensure that the user enters the
information correctly. For instance, you want to ascertain that the user does not enter a number in place of name
or enter a string or text for age. To incorporate such functionality and logic, you can use the selection statements
in the script.

The selection statements use a condition to select or determine the statements that are to be executed. These
statements assist you to make decisions and change the flow of execution of the statements. In JavaScript, there
are three selection statements—if, if..else, and switch. Let’s learn about them in detail one at a time starting
with the if statement.

Using the if Staternent

132

The if statement is one of the most basic and simplest control flow statement. You can use the if statement

when you want to execute a group of one or more script statements only when a particular condition is met.

The syntax for the 1f statement is:
if(condition):

{
statementl

In the preceding syntax, i f is a JavaScript keyword that signifies an i f statement and condition refers to the
condition that is evaluated. Note that the condition for the if statement is enclosed within parentheses
immediately after the it keyword. If the condition evaluates to t rue, then the script statement, represented by
statementl, enclosed within the curly braces are executed. If the condition evaluates to false, then the
statement enclosed within the curly braces are skipped and the statement immediately after the closing curly
brace (}) is executed.

The curly braces in the if statement are used to group multiple script statements, known as a block of statements. The
curly braces indicate that the block of statements is to be executed as a single staterment.

Let’s create a Web page, named i fStatement . html to learn the working of the if statement. You can find the
ifStatement.html file in the Code\ HTML\Chapter 2 folder on the CD. Listing 2.81 shows the code of the
ifStatement.html page:

Listing 2.81: Using the 1 Statement in a Script
<html> :
xritlesJavascriptexample</titles -
<body bgcolor="pink"> -
<script type="text/javascript” language=
Covar Namber=45; DT e T
TF({Number¥2) 1= 0)

vascript™s

document . write(Number: + “.is an oﬂd.numbér’-.");-. AT

document.write("
Thank you!"™); -
</script> ’ s
</Bodys

</html>

HTML and JavaScript Programming

In Listing 2.81, the script enclosed within <body> and </bedy> tags has a variable named Number that is
assigned a value of 45. The i £ statement in the script has a condition (the Number %2~=0 expression) that checks
if the Number variable is divisible by 2 or not. In case, the remainder is not equal to zero, the statement within
the curly braces of the if statement is executed. The execution then follows the next statement after the if
statement. However, if the remainder is equal to zero, the statement within the curly braces is ignored and the
statement immediately after the 1 f statement is executed.

When you open this page, the output appears, as shown in Figure 2.89

Do M Computer | Protected Mode Off #100% - -

Figure 2.89: Using the if Statement
In Figure 2.89, you can observe that the if statement checks the expression and then returns the value 45 as an
odd number.
Using the if...else Statement

As you know that the if statement allows you to execute a set of statements only when a particular condition is
true. However, if you want to execute another set of statements when the condition is faise, then you can use

the if..else statement.

The syntax for the 1 f..else statement is:

In the preceding syntax, if and else are keywords that signify the if..else statement. The condition of the
if.else statement is also enclosed within parentheses. If the condition is true, then the group of statements,
represented by statementl, enclosed within the first curly braces is executed. If the condition is false, then
execution of statement1 is skipped and is passed on to the e1se clause. The group of statements, represented
by statement2, of the else clause is then executed.

Let’s create a Web page, named ifelseStatement.html to learn the working of the if..else statement. You
can find the i felseStatement .htul file in the Code\ HTML\ Chaptet 2 folder on the CD. Listing 2.82 shows

the code of the ifelseStatement.html page:
Listing 2.82; Using the if..else Statement in a Script

133

Chapter 2

134

A Numberadd
: ~1f((ﬂumber§62) l« n)
e

_rite(uumr ,' " i an odd pumber®);

Telse
document ur*:te(Nunher + " is am aven: numher"} ,--;- r
} ST
document wri te("chf*i:ﬂ‘haﬂk yw' "), :
<fsEript>
</body>
</htm]> . :
In Listing 2.82, the Number variable has a value of 44. The condltlon of the if..else statement checks if the
Number variable is divisible by 2 or not. If the Number variable is divisible by 2, then the execution passes on to
the else clause. The statement within the curly braces after the e1se clause is then executed.

When you open this page, the output appears, as shown in Figure 2.90:

Flgure 2 90 Uslng the |f .else Statement

In Figure 2.90, you can observe that the if.. .else statement checks the expression to find out whether the value 44
is even or odd.

In JavaScript, you can nest one i f..else statement within another. Nested i f..e1se statements are useful when
you want additional checking or validation on the Web page. You can nest as many i f..e1se statements within
an if..else statement. In most cases, an if._else statement is nested inside the else clause of another
if..else statement.

Let’s create another Web page, named NestedifelseStatement.html to learn how to nest one if.else
statement within another. You can find the NestedifelseStatement . html file in the Code\HTML\ Chapter
2 folder on the CD. Listing 2.83 shows the code of the NestedifelseStatement . html page:

Listing 2.83: Nestmg if..else Statements

«hrtml>
‘whegds ERSEEE :
<t1t?e>33va5:r1pt£xamp'le</t11:1e>
</heads . .
my bgca'lom"pmk" e
<SCript type="text/javascript" Tanguagez“javascmpt >
var letter="1"; -
if (lettar=="A")
document . write("vowe'i A")
else
1f(1etter-="£“) . :
' - document;, wr'ite("vowe"l s".

else
1f('tetter=="1") sl
"~ document.write("vowel I")

HTML and JavaScript Programming

Flletrer=="y") = o
7 document write("vowe) 0Y); -
2 N N SRS e
oz - H dooument witite{"consonant ™) -
<bp/>Thank youl%):. . . 0 . o

document .write(”

</script>

</body>

</htmt>
In Listing 2.83, the letter variable in the script is assigned a value of T. The first if..else statement has a
condition (letter=="A") that checks whether letter is equal to A. This condition is false resulting in
executing the first else clause, which has an if.else statement nested inside it. The second if..else
statement has a condition that checks if letter is equal to E or not. This condition is also false resulting in
passing the execution to the else clause of the second if..else statement. The second else clause also has an
1 £.else statement that checks whether letter is equal to I. This condition is true, as a result of which the
vowel T message is displayed. When you open this page, the output appears, as shown in Figure 2.91:
g R 2B R RE e

.!ag:_t!s_m\A_m_mbh\l '?‘fix\‘G_:\og{.e. N
fle Edn View Favontes Took Hep
W veScoptEample s R

b Computer | Protected Mode: OFf

Figure 2.91: Using the Nested if...olse Statement

In Figure 2.91, you can observe that when you check the value of the letter variable to ensure whether the value
is a consonant or vowel, the value I passes through the different if...else blocks and returns that the value is
vowel. With the nested if..else statements, you can create a series of yes-no questions to make decisions.
Another alternative to the nested i f..else statements is the switch statement, which is discussed next.

Using the switch Statement
The switch statement provides a simpler alternative to the nested if.else statements. You can use the
switch statement to select a particular group of statements to be executed among several other groups of
statements. The group of statements that is to be executed is selected on the basis of a numeric or string
expression.

The syntax of the switch statement is:
© switch{exprassien) L0

case valuel:
statementl
break; -
case value2:
statementl
break;
casa valued:
statementd
break;
defauit: :
statement_default

135

Chapter 2

136

In the preceding syntax, switch, case, and break are keywords in JavaScript. The switch keyword indicates
the switch statement. The expression that is to be evaluated is specified within parentheses. This expression is
checked against each of the case values specified in the case statements (indicated by the case keyword). If any
of the case value matches with the value of the expression, the group of statements (statement.1, statement2,
or statement3) specified by the respective case statement is executed. If none of the case values matches with
the value of the expression, then the default statement, specified by the default keyword, is executed. The
default statement is generally placed at the very end of the switch block; however, you can place it anywhere
within the switch block.

We have shown the preceding syntax with only three case statements. However, you can have as many case
statements as you want but only one default statement.

Every group of statements specified by the case statements has a break statement that is indicated by the break
keyword. The break statement prevents the execution to pass on to the next case or default statement after a
match is found.

Let’s create a Web page, named switchStatement .html to learn the working of the switch statement. You
can find the switchStatement.html file in the Code\ HTML\ Chapter 2 folder on the CD. Listing 2.84 shows
the code of the switchStatement. html page:

Listing 2.84: Using the swi tch Statement in a Seript

case "I": '
document.write(“vowel 1");

L ks e SR
o - document . write("vowe

S heeaky o .
i o decment. e te (M <br/ous)
RO I - N S
<fhtmls

HTML and JavaScript Programming

In Listing 2.84, the letter variable is the expression for the switch statement. The value of the letter
variable is compared with the case values one by one. When a match is found, which in this case in the third case
statement, the set of statements specified by that case statement is executed. When you open this page, the
output appears, as shown in Figure 2.92:

¥ Computer | Prorected Mode; Cif HR100% -~

Figure 2.92: Using the switch Statement

In Figure 2.92, you can observe that when the value I of the letter variable is passed in the switch statement, the
statement checks the value through different cases and finally returns I as vowel.

Working with Loops

Loops or iteration statements are control flow statements that allow you to execute a particular group of
statements repeatedly. The number of times the group of statements is executed depends on a particular
condition that is a Boolean expression. If the condition is true, then the group of statements is executed. The
condition is again checked and if it is true, the group of statements is again executed. A single execution of a
group of statements is known as iteration. In this way, the loop keeps on executing until the condition becomes
false. When the condition becomes false, the execution of the loop halts, the current group of statements is
skipped, and the statement immediately following the loop is executed.

In JavaScript, you can use any of the three loops—while, do..while, and for loop. The condition is placed
either at the start or at the end of the loop depending on the type of loop.

Let's learn about the three loops one by one starting with the while loop.

Using the while Loop
You can use the while loop when you want to check the condition at the start of the loop. The group of
statements that is to be executed is specified after the condition. This implies that if the condition is false in the
first iteration itself, the group of statements in the while loop is never executed. On the other hand, the group of
statements keeps on executing until the condition becomes false. Therefore, inawhile loop, there can be zero
or more iterations. '

The syntax for the while loop is:
wiiTe(condition), -
" statemew
In the preceding syntax, while is a JavaScript keyword. The condition for the while loop is specified in
parentheses and the group of statements (statementl) is specified within the curly braces.

Let’s create a Web page, named whileLoop.html to understand the working of the while loop. You can find
the whileLoop.html file in the Code\ HTML\ Chapter 2 folder on the CD. Listing 2.85 shows the code of the
whileLoop.html page:

Listing 2.85: Using the while Loop in a Script

- <titlerdavascriptexamplec/td

efheads
137

Chapter 2

<Budy- bgtolor="pink"» SR SO

<script: type="text/javascript™ Janguage="javascript’s
var totaliistance=0, Fare=0; . - ° i 0l

while(totalpistance<=10)

faresfares§; = oo vl
totalristance=totaloistances2; - -
document.write("fare: Rs."+fares"zbr/>"
document ,write("Thank Yout"); "7
~ =/script> e :
</body>
</html>

In Listing 2.85, the while loop has a condition, totalbistance<=10, that checks whether the value of the
variable totalDistance is less than or equal to 10. In the first iteration, the condition is true as
totalDistance is 0. As aresult, the group of statements specified inside the while loop is executed, that is,
the fare variable is incremented by 5 and the value of totalDistance is incremented by 2. The condition of
the while loop is evaluated again in the second iteration, which is also true, as a result of which the values of
fare and totalDistance are incremented again. Note that in this way, the while loop executes six times. At
the end of the sixth iteration, the totalDistance variable is equal to 12 and when the condition is evaluated in
the seventh iteration, it becomes false, As a result, the while loop is exited and the Thank You! message is
displayed.

if the condition of a whife loop is always true, then the loop keeps execuling indefinitely. Such loops are known as
infinite loops as they have an infinite number of iterations.

When you open this page, the output appears, as shown in Figure 2.93

C:lsees\Amitabhtl vf
e e T RN L L bt A e etieinn e
File Edit View Favorites Tools Help

W G deveScrptiample TR

¥ Computer | Protected Mode: OFf

Figure 2.93: Using the while Loop
In Figure 2.93, you can observe that the value of fare is printed for six times as the while loop is also executed for
the six times,

Uising the do whife Loop

138

You learned that in the while loop, if the condition becomes false in the very first iteration, the group of
statements specified in the while loop is never executed. However, if you want the group of statements to
execute at least once, then you can use the do.while loop. This is possible because the condition of the
do..while loop is placed after the group of statements at the end of the loop.

The syntax of the do..while loop is:

HTML and JavaScript Programming

do
{
statementl

while (condition); T et e e F R e e I S T :
In the preceding syntax, do and while are JavaScript keywords. The group of statements, represented by
statement 1, is enclosed within curly braces. The condition is enclosed within parentheses immediately after
the while keyword. Note that there is semicolon after the closing parenthesis.

Let’s create a Web page, named dowhileLoop.html to understand the working of the do..while loop. You
can find the dowhileLoop.html file in the Code\HTML\ Chapter 2 folder on the CD. Listing 2.86 shows the
code of the dowhileLoop.html page:
Listing 2.86: Using the do..while Loop in a Script
<html> - : P S
<heads> i :)
 <title>Javascriptexample</titles
CefReads o e Sl
<body bgcolors"pink”> =~ i S -
<script type="text/javascript" language="javascript”>
var totalbistance=10, fare=0; R
do. ' '
- faresfare+S; .
totalpistance=totalpistance+2;
document .write("fare: Rs."+fare+"
"J;

In Listing 2.86, after the tctalDistance and fare variables are assigned values, the group of statements
inside the do..while loop is executed. After this, the condition is evaluated. Note that in the first iteration itself,
the condition is false because after the group of statements is executed, the totalDistance variable has a
value of 12. As a result, the do..while loop is exited and the Thank You! message is displayed.

When you open this page, the output appears, as shown in Figure 2.94:

% 100% vi

Figure 2.94: Using the do while Loop
As you can see in Figure 2.94, the do..while loop executes the group of statements at least once irrespective of
whether the condition is true or false.

Using the for Loop
The for loop is one of the most commen loops in JavaScript and other programming languages. The for loop
allows you to execute a block of statements for a predetermined numbet of times, that is, the number of

139

Chapter 2

140

iterations of a for loop is known beforehand. The condition of the for loop is placed at the beginning of the
loop.

The syntax of the for loop is:
et far(fni'tiaﬁ',zmcn_-stat‘emnt:-

In the preceding syntax, for is a JavaScript keyword that is immediately followed by a pair of parentheses that
encloses the initiali zation_statement, conditicn, and updation_statement, each of which is
separated by a semicolon, The initializati on_statement refers to the statement in which the loop control
variable is declared or assigned an initial value. A loop control variable, as the name suggests, is a variable that
is used in condition and updaticon_statement to control the execution of the for loop. The
updation statement refers to the statement that updates the value of the loop control variable,

Note that in the first iteration of the for loop, initialization statement is the first statement to be
executed followed by the evaluation of condition, which if true results in the execution of the group of
statements (statementl) inside the for loop. After the group of statements is executed, the
updation_statement is executed completing the first iteration, The condition of the for loop is again
evaluated for the second iteration and so on.

Let’s create a Web page, named forLoop. html to understand the working of the for loop. You can find the
forLoop.html file in the Code\HTML\Chapter 2 folder on the CD. Listing 2.87 shows the code of the
forLoop.html page:

Listing 2.87: Using the for Loop ina Script

ey

</htmls e : :
In Listing 2.87, the Number variable is declared to store an even number from 0 to 10. In the for loop, the
Number variable is used as a loop control variable and is assigned a value of 0. The condition, Numbe r<=10, is
then evaluated. This condition is t rue in the first iteration, as a result of which, value of the Number variable is
displayed. After this, the Number variable is incremented by 2 and the condition is again evaluated. In this way,
the Zor loop iterates six times until the value of Number becomes 12.

The initialization statement, condition, and updation statement are optional and can be omitted in the for foop. You can
omit the condition or updation statement if you want an infinite for loop.

When you open this page, the output appears, as shown in Figure 2.95:

HTML and JavaScript Programining

Figure 2.95: Using the for Loop '
In Figure 2.95, you can observe that the for loop is executed until the variable Number is less than or equal to 10.
Working with Jump Statements
As the name suggests, jump statements allow you to jump over or skip certain statements in a script and execute

some other statement. You can use jump statements to exit or break a loop. In JavaScript, there are two jump
statements —break and continue. Let’s learn about the break statement first.

Using the break Statement

As you know, the switch statement uses the break statement to prevent the execution of the subsequent case
statements. The break statement also allows you to break or exit a loop. When used inside a loop, the break
statement stops executing the loop and causes the loop to be immediately exited. In case, the loop has statements
after the break statement, then those remaining statements are skipped.

Let’s create a Web page, named breakStatement.html to understand the working of the break statement.
You can find the breakStatement .html file in the Code\HTML\Chapter 2 folder on the CD. Listing 2.88
shows the code of the breakStatement . html page:

Listing 2.88: Using the break Statement in a Script

In Listing 2.88, if the value of the count variable is less than 10, the while loop is executed. The if_else
statement specified inside the while loop checks if the count variable is divisible by 2 or not. If count is
divisible by 2, then the break statement is executed. As a result, the while loop is immediately exited and the
staterment immediately following the while loop is executed.

141

Chapter 2

If break statement is used in a nested loop, then only the loop which contains the break statement is exited and not the
loop which encloses the nested loop.

When you open this page, the output appears, as shown in Figure 2.96:

¥

s B CAseamabhl v by (X HGnge
Fie EdR View Favorts Took Hey -

W gjms:npﬁmpn

AF Computer | Protected Mode: O 1% v

Figure 2.96: Using the break Statement

In figure 2.96, you can observe that when the variable count is divided by 2 and the remainder is 0, the while
loop is exited.

Using the continue Statement

142

Similar to the break statement, the continue statement can also be used to stop the execution of a loop.
However, the continue statement does not exit the loop; it causes the evaluation of the condition for the next
iteration of the loop. If the loop has any statements after the continue statement, then those statements are not
executed.

Let’s create a Web page, named continueStatement.html to understand the working of the continue
statement. You can find the continueStatement .html file in the Code\HTML\ Chapter 2 folder on the CD.
Listing 2.89 shows the code of the continueStatement.html page:

Listing 2.89: Using the continue Statement in a Script
<htmTs
<head> . : .
<titlesJavascriptExample</titles
</head> . o .
~<hody. bgcolor="pink"> T
<script type="text/javascript” language="javascript®> -
VAr COUNt=0; R TP Rt T
s while(eount<10) SRR
g : : : _ .
++Count;
Ff{count®2==0)
‘continue;
alse S e
document.write("count="+rcount+"
"); .
} , : A

document.write(Twhile oop exited”); -
Cefseripts. ' g

</body>

</htmls . E Lot eb i }
In Listing 2.89, the 1f._else statement inside the while loop has a centinue statement. The condition of the
if..else statement checks whether the count variable is divisible by 2 or not. If count is divisible by 2,
then the continue statement is executed. As a result, execution of the loop is halted, the remaining staternents
are skipped, and the condition of the while loop is evaluated for the next iteration. Note that in this case, the
continue statement is executed for every even number between 0 and 10. When you open this page, the
output appears, as shown in Figure 2.97:

HTML and JavaScript Programming

L 8 Csersanitabhl v 4y P 1 oogie
Fle Edt View fFavortes Took Help
. S .o~
M Computer | Pratected Mode: OFf Cwie% v

Figure 2.97: Using the continue Statement

As you can observe in Figure 2.97, for every even number between O and 10, the value of count is not
displayed.

Working with Functions

Consider a situation where you need to calculate the average of three given numbers at different places in the
script. In this case, if you write the statements or code to find the average at each of those places in the script, the
script becomes rather long. This in tumn may affect the readability and efficiency of the script. So in all such
situations, you can make use of functions. A function refers to a cohesive block of statements that has a name
and can be accessed or called from anywhere and any number of times in the script.

In JavaScript, you can quickly create your own function in the script to perform an action or task. You can access
or call a function in the script as many times as you want. Every time that you call a function, the specified action
or task is performed. The statement in which the function is called is known as the calling statement.

In most cases, the calling statement and the function exchange information, that is, the calling statement sends
some information that the function uses or the function returns some information that the calling statement uses.
You can exchange information between the calling statement and the function by using parameters, which are
variables inside the function. You need to declare the parameters of a function while creating the function.

Let’s first learn how to create a function in JavaScript. The syntax to create a function is:
function function.name (parameterl, parameter?, parametern)

statementl e
In the preceding syntax, function is a JavaScript keyword that indicates the start of a function in the script. The
function name refers to the name of the function, which is immediately followed by a pair of parentheses. The
parentheses enclose the parameters (parameterl, parameter2, and so on) of the function. A function can have
zero or more number of parameters. Note that even if you do not specify any parameters of the function, you
need to provide the parentheses. When the function is called in the script, the statements (represented by
statement1) enclosed in the curly braces of the function are executed.

While providing a name for a function and the parameters, you should follow the same rules as specified for naming
variable. The parameters as well as any variables declared inside a function are local variables, that is, they can be

accessed and used only inside that function.

After creating a function, you can access or use it by calling it in the script. You can call a function by simply
using its name and providing arguments for the parameters of the function. An argument is the value that is
passed in the function call and is assigned to the parameters. It is essental that the number and order of
arguments provided in the function call have to be same as the number of parameters in the function.

143

Chapter 2

144

When you call a function in a script, the execution passes from the calling statement to the function. As a result,
the statements inside the function are executed. After the statements are executed, the control of execution
passes back to the calling statement.

The syntax of a function call is:

In the preceding syntax, function_name refers to the name of the function that you want to call. The
parentheses after function_name enclose the arguments (represented by zrgumentl, arqument2, and so
on).

Let’s create a Web page, named function.html to understand how a function works. You can find the
function.html file in the Code\HTML\Chapter 2 folder on the CD. Listing 2.90 shows the code of the
function.html page:
Listing 2.90: Creating and Calling a Function in a Script

Po<htals o . ¥ o

: '.-v:b_ody‘bgcc‘_‘-loré‘_"p'ink"'_>-.'. .
i ascry

G

In Listing 2.90, the caiculateaverage () function is called by specifying its name and an empty pair of
parentheses. Note that you need to provide the parentheses even if there are no arguments to be passed to the
function. When you open this page, the output appears, as shown in Figure 2.98:

xr | Probected Mode: Off

Figure 2,98: Creating and Calling a Function
In Figure 2.98, you can observe that the calculateAverage() function is called to return the average of variables a,
b, and c.

JavaScript functions can also return some information or value to the calling statement. You can use a variable in
the calling statement to store the value returned by the function. To return a value to the calling statement, you
need to use the return statement.

The return statement allows you to return a single value to the calling statement. Though the return
staternent is specified at the end of the function just before the closing curly brace (}), you can specify the
return statement anywhere in the function. When the return statement is executed, any statements after the
return staternent are ignored and the control of execution passes back to the calling statement.

HTML and JavaScript Programming

The syntax of the return staternent is:

return value; . IR TEL Lt . : i
In the preceding syntax, returnis a]avaScrlpt keyword and value refers to the value retumed to the callmg
statement. You can also return the value of a variable by providing the name of a variable in place of value.

Let’s create a Web page, named returnFunction.html to understand how a function returns a value. You
can find the returnFunction.html file in the Code\HTML\ Chapter 2 folder on the CD. Listing 2.91 shows
the code of the returnFunction.html page:

Listing 2.91: Returning a Value froma Functlon
<htmls . . -
<head> R -

: ‘ﬂwtmzavascﬁﬁtexmlecitw ﬂ"ea»
</head>
<body bgcol ara’ ‘.p':

“javascript”s

“fanction <
var averagea (a+b+c)l3' T

In Listing 2.91, the calculateaverage() function has three parameters that are used inside the function to
find their average, which is stored in the average variable n the function. When the calculateaverage ()
function is called, three arguments are passed to it. These arguments are assigned to the three parameters in the
same order. The value of the average variable is then evaluated and returned to the calling statement through
the return statement. As a result, value of the average variable is assigned to the avg variable in the calling
statement. When you open this page, the cutput appears, as shown in Figure 2.99:

Figure 2.99: Returning a Value from a Function
There are a number of in-built functions included in JavaSeript to work with the JavaScript applications. Some of
the most frequently used functions are as follows:
Q alert()
prompt()
confirm)
eval()
isFinite()
isNaN()
parselnt(}
parseFloat()

g 00DDOoOOodOd

145

Chapter 2

]
a
)
m]

Number(}
String()
escape()
unescape()

Let’s discuss these functions one by one with their uses.

Using the alert () Function

The alert () function is used to display information in a message box. This function is generally used to
display the results of your JavaScript processing where you do not want to update the Web page itself. You can

use this function to display error messages once you validate a form.

The alert (} function is also useful when you test JavaScript. You can use it to display the value held in a

variable at that stage in the processing.

Let’s create a Web page, named alertFunction.html to understand how to use the alert () function in a
script. You can find the alertFunction.html file in the Code\HTML\Chapter 2 folder on the CD. Listing

292 shows the code of the alertFunction.html page:

Listing 2.92: Using the alert() Function in a Script
hml> e

In Listing 2.92, you can ol

ixbody bgeators”
L oeseript typg'a‘?_
o EerE Thel e wrl

Cefseripts

<heads - :
<titlexda
</head> " :

</ heml>

World.

As you can observe in Figure 2.100, the alert message box contains the OK button. You can click this button to

¥ Compater | Fratected Mode: O

Figure 2.100: Using the alert() Function

continue running the JavaScript code.

Using the confirm() Function

146

The confirm{) function is the advanced form of the alert (} function. It is used to display a message as well
as to return a true or false value. The confirm() function displays a dialog box with two buttons: 0K and
Cancel at the bottom of the message box. When you click the OK button, the function returns t rue. When you

bserve that the alert (} function displays a message box containing the text Hello

HTML and JavaScript Programming

click the Cancel button, the function returns false. This allows you to interrupt your JavaScript processing to

ask the user a question and then continue processing based on which button is clicked.

Let’s create a Web page, named confirmFunction.html to understand how to use the confirm{) function
in a script. You can find the confirmFunction.html file in the Code\HTML\ Chapter 2 tolder on the CD.

Listing 2.93 shows the code of the confirmFunction.html page:

Listing 2.93: Using the conflrm() Functlon in a Script
<htmT>
<head>
<titl »Javascriptﬁxamp?ed t1 t1e>
</head> .
<body bgcotors" p'l 'k" : :
<script typew“text!:avascript" "!anguages "javaseript”> :
var gry= conf‘tm (“Are ynu sure: to send thts file to Recyde B'in 2"
if-Lgry) B
document: wrh:e ("fhe fﬂe 15 deTeted“).
&lse R
“document .write (“we'fcome to JavaScnpt“),
</seripts .

</body>
- S hEml>

In Listing 2.93, you can observe that the var varlable stores the value of the query based on whether you cl1ck

the OK button or the Cancel button.
When you open this page, the output appears, as shown in Flgure 2 101:

I Computer | Protected Mode: OR T k% -

Figure 2.101: Using the confirm{) Function
In figure 2.101, you can observe that as the page is loaded, the confirm dialog box appears.

When you click the 0¥ button, the correspondmg message appears, as shown in Figure 2.102:

Figure 2.102: Displaying a Message After Clicking the OK Button
Let's now learn about the usage of the prompt() function, in the next section.

Using the prompt() Function

The prompt () function is the most advanced among the alert (), confirm(}, and prompt () functions
because it accepts two parameters instead of one. The prompt () function displays a message box containing a

147

Chapter 2

text box with OK and Cancel buttons. It returns a text string when OK is clicked and null when Cancel is
clicked.

Let’s create a Web page, named promptFunction.html to understand how to use the prompt () function in a
script. You can find the promptFunction.htmi file in the Code\HTML\ Chapter 2 folder on the CD. Listing
2.94 shows the code of the promptFunction. html page:
Listing 2.94: Using the prompt() Function in a Script

: ‘«iﬂg:aﬁvascriptﬁxm?pleé:jﬂt}esp "
. <body bgcolor="pink"> . . o0
_escript type="text/javascript” ‘language
1L var namse promptlotPlease- pnter your na
“1F (nameseng1) b name==""} name
document.write ("Hi ™ 4 name + -

serd

In Listing 2.94, you can observe that the name variable contains the value that you enter in the prompt message
box. When you click the OK button, the processing continues and the entered name is then displayed with a
message in the window,

When you open this page, the output appears after entering your name in the text field of the input box, as
shown in Figure 2.103:

M Computer | Protected Mode Off % -

Figure 2.103: Using the prompt{) Function

In Figure 2.103, you can enter your name in the text box and click the 0% button, the message appears, as shown
in Figure 2.104:

AN Computer | Protected 4 100%

Figure 2.104: Displaying a Message after Clicking the OK Button

HTML and JavaScript Programming

Let’s now learn about the eval() function in the next section.

Using the eval() Function

The eval () function is generally used to introduce variable values into a string, It accepﬁ a string containing
JavaScript code that it evaluates as an argument and then returns the resulting value.

Let’s create a Web page, named evalFunction.html to understand how to use the eval () function in a ‘
script. You can find the evalFunction.html file in the Code\ HTML\ Chapter 2 folder on the CD. Listing 2.95
shows the code of the evalFuncticn.htmi page:

Listing 2.95: Using the eval(} Function in a Script
<html=> A
<head> . -
<titlesJavaScriptExample</titles
</haad> s AR
<body bgcolor="pink’> S L
<SCript type="text/javascript” language="javascript®s
eval (Mx=25; y=10; document.write {u-y}"): : :
‘document.write ("<brs"); Y :
document.write (eval ("9*3"));- .
document.write ("
"}; _
var a = 15;, R
document.write (eval (a/3));
</script> . ¢ o -
Cefbodys - e e
<fhem¥> o0 s e s T e S A AR
In Listing 2.95, you can observe how the eval () function evaluates the strings in different ways. When you
open this page, the output appears, as shown in Figure 2,105
Ky T et T4 T o
e o e roe o g

Figure 2.105: Using the eval() Function
In Figure 2.105, you can observe that the eval() function is evaluated in three different ways and returns the
output depending on the value passed to it.

Using the isFinite{) Function
The isFinite () function checks whether a value is finite or not. The isFinite () function returns a Boolean
value: true or false indicating whether the argument passed to it is finite or infinite. The isFinite () function
always returns true, unless it considers an argument to be equal to infinity.

Let’s create a Web page, named isFiniteFunction.html to understand how to use the isFinite ()
function in a script. You can find the isFiniteFunction.html file in the Code\ HTML\ Chapter 2 folder on
the CD. Listing 2,96 shows the code of the i sFiniteFunction.html page:
Listing 2.96: Using the isFinite() Function in a Script
<htmls . FAERaS
<titleéslavascriptExample</titles
</head>. LR
<body bgcolor="pink™>

149

Chapter 2

<script type="text/javascript” language="javascript">

document.write (isFinite (998)); C

document.write ("
");

document.write (isFini te("He'l 1o world"));

</seript>

</body>

<fhtmT> E . .
In Listing 2.96, you can observe how the isFinite () function checks an integer and a string value to ensure
whether the value is finite or infinite. When you open this page, the output appears, as shown in Figure 2.106:

FME&V"FMTM%. . .
.J‘.h? gmm-pmmpu IR~ I s

woz
e

A Computer| Protected Mode O s v

Figure 2.106: Using the isFinite{) Function
In Figure 2,106, you can observe that the Boolean value is true for 998 and false for Hello World.

Using the isNaN() Function

The isNaN () function checks whether a value is a number or not. The NaN stands for Not a Number, which
only checks for the numerical nature of a value, not whether the value is finite or infinite. Based on the result, the
isFinite() function returns a Boolean value: true or false indicating whether the argument passed to it is a
number or string.

Let's create a Web page, named isNaNFunction.html to understand how to use the isNaN () function ina
script. You can find the isNaNFunction,html file in the Code\HTML\ Chapter 2 folder on the CD. Listing
2.97 shows the code of the i sNaNFunction.html page:

Listing 2.97: Using the 15NaN{) Function in a Scrlpt
<html>
<head> '
<titierlavascri ptExamp1 e</t1t'l &
</head>
<hody bgcolor="pink™>. .
<script type=' text/]avasc pt 'languages_._ &
document . wirite (isNak: {39_ ;
document. write (“
")3"
document,write (i snaN("He?lo uoﬂd"))
</script>
</body>
In Listing 2. 97 you can observe how the 1sNaN () functlon checks an mteger and a string value to ensure
whether the value is a number. When you open this page, the output appea.rs, as shown in Figure 2.107:

Figure 2 107: Usmg the IsNaN() Function

150

HTML and JavaScript Programming

In Figure 2.107, you can observe that because the 998 is a number, the isNaN {) function returns false and Hello
World is a string.

Using the parseInt() and parseFloat() Functions)
You can use the parseInt () and parseFloat () functions to extract a number from the beginning of a string.
The parselInt () function parses the string and returns the first integer value that is found in the string,
Similarly, the parseFloat () function parses the string and returns the first floating-point value found in the

string. However, if the parser finds any non-numeric value before returning the value, then a special value NaN
(Not a Number) is returned.

When you parse a string, JavaScript uses the radix parameter to specify which numeral system is used. For
example, a radix of 8 (octal) shows that the number in the string should be parsed from an octal number to a
decimal number. If the radix parameter is excluded, JavaScript assumes the following;

B If Ox precedes the string, the radix is 16 (hexadecimal)

U I 0 precedes the string, the radix is 8 (octal)

8 If any other value precedes the string, the radix is 10 (decimal)

Let's create a Web page, named parseintsparseFloatFunction.html to understand how to use the
parselint () and parseFloat () functions in a script. You can find the
parselntéparseFloatFunction.html file in the Code\HTML\ Chapter 2 folder on the CD. Listing 2.98
shows the code of the parseIntéparseFloatFunction. homl page:

Listing 2.98: Using the parselnt() and parseFloat() Functions in a Script

document. write (parseFivat ("he is. 25°01 ..
document.write ("<brs"); T B SR
</scriptys | i .

<shodys

</ﬁtm]> R . B]
In Listing 2.98, you can observe how the parseInt () and parseFloat () functions check an integer and a

string value to ensure whether the value is a number. When you open this page, the output appears, as shown in
Figure 2.108:)

151

Chapter 2

1' T Computer | Protected Hode: OR ok -

Figure 2.108: Using the parseint{) and parseFloat{) Functions

In Figure 2.108, you can observe that the parselnt() function returns only the integer values whereas the
parseFloat() function returns the floating point values with fractionai parts.

Using the Number(} Function

152

The Number () function is used to convert the value of an object into a number. If the value is Boolean, the
Mumber {) function returns the value 1 for true and the value 0 for false. Similarly, in case of the Date object,
the Number {) function returns the number of milliseconds since midnight January 1, 1970 UTC (Universal Time
Coordinated). Moreover, if the value of the object cannot be converted to a number, the Number {) function
returns NaN.

Let's create a Web page, named NumberFunction.html to understand how to use the Number (} function in
a script. You can find the NumberFunction.html file in the Code\HTML\ Chapter 2 folder on the CD. Listing
2.99 shows the code of the NumberFunction.html page:

Listing 2.99: Using the Numbero Functlon ina Scrlpt

L <htals”
b cheads,
<tt t'!e>3ava5c ri ptExamp1e</t1 t’|e>
Cvafheads
shotdy bgm]ora"pmk" ' : Con
CrkseripE type="text}javascr1pt 1anguage- Javascmpt 5.
‘document.write (Number (Bocﬂean (true))), Lo
iidocumentiwrite ("<bpx"); -
document.write (Number (soo'lea.n (false))),
document.write (“<brs");
document . write (Number (String ("998“)))
-document. write ("
");
document, write (Numbepr (String (998 899"))),
‘ document write ("<hr>");
: ,-#scnpt:-
e/ bodyy:
<fhemls : S
In Listing 2.99, you can observe that the Number () function converts the dlfferent object vaIues to a number.
When you open this page, the output appears, as shown in Figure 2.109:

*t.mputulpmlm:dede'Oﬂ -! W% -

F|gure 2.108: Using the Number(} Functson

HTML and JavaScript Programming

In Figure 2.109, you can observe that the Number() function changes the value of true to 1, false to 0. However,
the value of 998 is not changed because it is already a number and the value of 998 899 is NaN because the value
contains a space.

Using the escape() and unescape() Functions

The escape () function is used to encode a string so that the string can be read on all computers. The escape ()
function encodes special characters except *, @, -, _, +, ., and /. On the other hand, you can use the unescape ()
function to decode the strings that are encoded with the escape () function. You cannot use the escape {) and
unescape () functions to encode or decode Uniform Resource Identifiers (URIs).

Let's create a Web page, named escapesunes capeFunction.html to understand how to use the escape ()
and unescape () functions in a script. You can find the escape&unescapefunction.html file in the
Code\HTML\Chapter 2 folder on the CD. Listing 2100 shows the code of the
escapedunescapeFunction. html page:

Listing 2.100: Using the escape() and unescape{) Functions in a Script
<html> : '
<head>
<titlexlavascripteExample</titles
</head> S
<body bgcolor="pink"> e N
<sCript type="text/javascript” language="javascript">
document.write (escape ("dello warld"));
document.write ("<brs"): o
document.write (escape (! #D3&0<")); : T b
document,write ("<bi>") jdocument .write (unescape (“Hello%20world"));. FRESE
document . write ("<brs"); S _ B
document.write (unescape ("¥21%20%230%24%26X28%29%3CK3E"));
document.write ("
®); -~ . R
s/seripts o e
In Listing 2.100, you can observe that the escape () function encodes the different special characters.
Alternatively, the unescape () function decodes the same encoded string to the original string. When you open
this page, the output appears, as shown in Figure 2.110:

- Fille Edt Vew Ewoitess Toak Hep

¥ CUsenAmitabin v |

M Computer | Protected htode: OFf 0% v

Figure 2.110: Using the escape() and unescape{) Functions
In Figure 2.110, you can observe that the escape() and unescape() functions encode and decode the specified
strings.
With this we come to the end of the chapter. Let's now summarize the main points of the chapter.

Summary
In this chapter, you learned about the structure of an HTML document, different HTML tags, HTML forms and
form controls, and cascading style sheets. You have also learned about embedding JavaScript in an HTML page,
variables, arrays, objects, operators, control and looping statements in JavaScript. Finally, you learned about
some common events and functions used in a JavaScript application.

153

Chapter 2

In the next chapter, we discuss about Personal Home Pages (PHP).

Quick Revise

Q1. tag is used to create a paragraph in HTML.

Ans: <p> tag

Q2. (CSS stands for

Ans: Cascading Style Sheets

Q3. You can create both the vertical and horizontal frames in a Web page at the same time, (True/False)

Ans: True

Q4. The name of a variable can begin with a number. (True/False)

Ans: False

Q5. What is the use of conditional operator?

Ans: The conditional operator returns the second operand if the first operand is true, otherwise, returns the
third operand

Q6. What is cascading style sheets? Name the different ways to apply a CSS to an HTML document.

Ans: Cascading Style Sheets {(CSS) or simply style sheets are text files that contain one or more rules in the
form of property/value pairs to determine how elements in a Web page should be displayed. You can
create styles in four ways:

O Using inline styles
O Using external style sheets
D Using internal style sheets
0 Using style classes

Q7. What do you mean by Image Map?

Ans: Tmage Map is a technique that divides the image into multiple sections and allows linking of each section
to different Web pages. Linked regions of an Image Map are called hot regions and each hot region is
associated with an HTML file that is loaded when the hot region is clicked.

Q8. What is the use of the cnsubmit event?

Ans: The onsubmit event is triggered when the submit button is clicked on the form. The cnsubmit event is
generally used to validate all the values provided in the form fields before submitting the form. If the
form validation fails and the onsubmi t. event returns false, the data is not sent.

Q9. What are the ways to embed JavaScript in an HTML page?

Ans: You can embed a script in an HTML document by creating a script within the document or linking an
external script file with the HTML document.

Q10. What are functions in JavaScript? Write the syntax to create a function.

Ans: A function refers to a cohesive block of statements that has a name and can be accessed or calied from

154

{
¥

anywhere and any number of times in the script. In JavaScript, you can quickly create your own function
in the script to perform an action or task. After you have created a function, you can access or call it in
the script as many times as you want. Every time that you call a function, the specified action or task is
performed. The syntax to create a function is:

"~ function function_name (parameterl, parameter2, . . . parametern).

statementl

